Math 595 Fukaya Categories of Surfaces: Conformal automorphism groups of disks with marked points

James Pascaleff

16 September 2022

Let $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\} \cong \mathbb{P}^{1}$ be the Riemann sphere. The group GL($2, \mathbb{C}$) acts on $\widehat{\mathbb{C}}$ by Möbius transformations:

$$
\mathrm{GL}(2, \mathbb{C}) \rightarrow \operatorname{Aut}(\widehat{\mathbb{C}}), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \varphi(z)=\frac{a z+b}{c z+d},
$$

where in the formula on the right it is to be understood that $\varphi(-d / c)=\infty$ and $\varphi(\infty)=a / c$, unless $c=0$ in which case $\varphi(\infty)=\infty$. This homomorphism is surjective onto the group of holomorphic automorphisms $\operatorname{Aut}(\widehat{\mathbb{C}})$, and its kernel consists of scalar multiples of the identity matrix. Thus it descends to an isomorphism

$$
\operatorname{PGL}(2, \mathbb{C}) \cong \operatorname{Aut}(\widehat{\mathbb{C}})
$$

Now observe that the homomorphism $\operatorname{SL}(2, \mathbb{C}) \rightarrow \operatorname{PGL}(2, \mathbb{C})$ is surjective, since the field \mathbb{C} has the property that every element is a perfect square. The kernel of this map is $\{I,-I\}$, where I denotes the identity matrix, and so we have isomorphisms

$$
\operatorname{PSL}(2, \mathbb{C})=\operatorname{SL}(2, \mathbb{C}) /\{ \pm I\} \cong \operatorname{PGL}(2, \mathbb{C}) \cong \operatorname{Aut}(\widehat{\mathbb{C}}) .
$$

It is a standard fact that $\operatorname{Aut}(\widehat{\mathbb{C}})$ acts simply transitively on triples of pairwise distinct points in $\widehat{\mathbb{C}}$. This is equivalent to the statement that, for any triple $\left(z_{0}, z_{1}, z_{2}\right)$ of pairwise distinct points, there is a unique Möbius transformation φ such that $\varphi(0)=z_{0}, \varphi(1)=z_{1}$, and $\varphi(\infty)=z_{2}$. Solving for φ given z_{i} is an elementary problem.

Consider the open upper half-plane $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$. The closure of \mathbb{H} in $\widehat{\mathbb{C}}$ will be denoted $\overline{\mathbb{H}} ;$ thus $\overline{\mathbb{H}}=\mathbb{H} \cup \mathbb{R} \cup\{\infty\}$. A Möbius transformation that preserves \mathbb{H} must also preserve its boundary $\partial \overline{\mathbb{H}}=\mathbb{R} \cup\{\infty\}$. Therefore this transformation must be representable by a matrix with real entries. Note that $G L(2, \mathbb{R})$ and $\operatorname{PGL}(2, \mathbb{R})$ both have two connected components that are distinguished by the sign of the determinant. The identity component of $\operatorname{PGL}(2, \mathbb{R})$ preserves \mathbb{H}, while the other component swaps \mathbb{H} with the lower half-plane. The mapping

$$
\operatorname{PSL}(2, \mathbb{R}) \rightarrow \operatorname{PGL}(2, \mathbb{R})
$$

is an isomorphism onto the identity component. We conclude that there is an isomorphism

$$
\operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{Aut}(\mathbb{H}) .
$$

Just as $\operatorname{PGL}(2, \mathbb{C})$ acts simply transitively on triples of pairwise distinct points in $\widehat{\mathbb{C}}$, the group $\operatorname{PGL}(2, \mathbb{R})$ acts transitively on triples of pairwise distinct points in $\mathbb{R} \cup\{\infty\}$. (The arguments can be done in parallel if we think of $\widehat{\mathbb{C}}$ as the projective line over \mathbb{C} and $\mathbb{R} \cup\{\infty\}$ as the projective line over \mathbb{R}.)

However, the action of $\operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{Aut}(\mathbb{H})$ has two orbits: if we orient $\mathbb{R} \cup\{\infty\}$ as the boundary of $\overline{\mathbb{M}}$, there are two possible cyclic orderings of the three points: $z_{0}<z_{1}<z_{2}<z_{0}$ and $z_{0}<z_{2}<z_{1}<z_{0}$. The action of $\operatorname{PSL}(2, \mathbb{R})$ preserves this cyclic ordering because it acts on $\mathbb{\mathbb { H }}$ by orientation-preserving diffeomorphisms. (The nonidentity component of $\operatorname{PGL}(2, \mathbb{R})$, which swaps the upper and lower halfplanes, reverses the cyclic ordering.) The conclusion is that $\operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{Aut}(\mathbb{H})$ acts simply transitively on triples of pairwise distinct points in $\partial \bar{\Pi}$ with a fixed cyclic ordering.

This has a consequence that if we consider configurations of one or two points on $\partial \overline{\mathbb{H}}$, there is a nontrivial stabilizer subgroup of $\operatorname{Aut}(\mathbb{H})$.

First consider configurations of two distinct points on $\partial \mathbb{H}$. There is only one cyclic ordering of two points, so the action of $\operatorname{Aut}(\mathbb{H})$ is transitive. Thus the stabilizers for all configurations are mutually conjugate subgroups, and we might as well just pick a single configuration and compute its stabilizer. So consider the configuration $\left(z_{0}=0, z_{2}=\infty\right)$. The general form of a Möbius transformation in $\operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{Aut}(\mathbb{H})$ is

$$
\varphi(z)=\frac{a z+b}{c z+d}
$$

with $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$ The condition $\varphi(\infty)=\infty$ means $c=0$, and the condition that $\varphi(0)=0$ means $b=0$. Thus $\varphi(z)=a d^{-1} z$. Note that $a d=1$ means that $a d^{-1}=a^{2}$. So

$$
\varphi(z)=a^{2} z \quad\left(a \in \mathbb{R}^{\times}\right)
$$

is multiplication by some positive real number a^{2}. Thus the stabilizer subgroup is isomorphic to the multiplicative group $\left(\mathbb{R}_{>0}, \cdot\right)$ of positive real numbers. Via the exponential map this is isomorphic to the additive group $(\mathbb{R},+)$.

Now consider the configurations of one point on $\partial \overline{\mathbb{H}}$. By transitivity we may as well take this point to be ∞. The condition $\varphi(\infty)=\infty$ again means $c=0$, so $a d=1$ and so φ reduces to

$$
\varphi(z)=a^{2} z+a b \quad\left(a \in \mathbb{R}^{\times}, b \in \mathbb{R}\right) .
$$

In other words, the stabilizer subgroup is the group of affine linear transformations of \mathbb{R} with positive leading coefficient. This is a two-dimensional connected and simply connected nonabelian Lie group; these properties characterize it up to isomorphism.

So far we have used the upper half-plane model, but we could also use the unit disk model. Let $\mathbb{D}=$ $\{z \in \mathbb{C}||z|<1\}$, and let $\overline{\mathbb{D}}$ be its closure. To compare \mathbb{H} and \mathbb{D} we must choose a conformal isomorphism between them. For lack of a canonical choice, let us choose

$$
f(z)=\frac{z-i}{z+i}
$$

This defines a map $\mathbb{H} \rightarrow \mathbb{D}$, with $f(0)=-1, f(1)=-i$ and $f(\infty)=1$.
By general nonsense, the group $\operatorname{Aut}(\mathbb{D})$ is conjugate to $\operatorname{Aut}(\mathbb{H})$ inside $\operatorname{Aut}(\widehat{\mathbb{C}})$:

$$
\operatorname{Aut}(\mathbb{D})=f \operatorname{Aut}(\mathbb{H}) f^{-1}
$$

Recall that the stabilizer of the configuration $(0, \infty)$ in $\partial \overline{\mathbb{H}}$ is $\varphi(z)=\lambda z$ for $\lambda \in \mathbb{R}_{>0}$. After conjugation by f this becomes

$$
\psi(z)=\frac{(\lambda+1) z+(\lambda-1)}{(\lambda-1) z+(\lambda+1)},
$$

so these are the conformal automorphisms of \mathbb{D} that fix $(-1,1)$ in $\partial \bar{D}$.

Recall that the stabilizer of $\infty \in \partial \overline{\mathbb{H}}$ is $\varphi(z)=\lambda z+\mu$, where $\lambda \in \mathbb{R}_{>0}, \mu \in \mathbb{R}$. After conjugation by f this becomes

$$
\psi(z)=\frac{(\lambda+i \mu+1) z+(\lambda-i \mu-1)}{(\lambda+i \mu-1) z+(\lambda-i \mu+1)} .
$$

A conformal automorphism of \mathbb{H} that fixes ∞ is completely determined by where it sends i : with the notation as above, $\varphi(i)=\lambda i+\mu=\tau \in \mathbb{H}$. Since $f(i)=0$, by the same token, a conformal automorphism of \mathbb{D} that fixes 1 is completely determined by where it sends 0 , which is some point $\alpha=f(\tau) \in \mathbb{D}$. Thus we may parametrize the stabilizer of $1 \in \partial \overline{\mathbb{D}}$ by points $\alpha \in \mathbb{D}$. We leave it as an exercise to carry this out explicitly.

