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Let Ĉ=C∪ {∞} ∼=P1 be the Riemann sphere. The group GL(2,C) acts on Ĉ by Möbius transforma-
tions:

GL(2,C) → Aut(Ĉ),

(
a b
c d

)
7→ϕ(z) = az +b

cz +d
,

where in the formula on the right it is to be understood thatϕ(−d/c) =∞ andϕ(∞) = a/c, unless c = 0
in which case ϕ(∞) =∞. This homomorphism is surjective onto the group of holomorphic automor-
phisms Aut(Ĉ), and its kernel consists of scalar multiples of the identity matrix. Thus it descends to
an isomorphism

PGL(2,C) ∼= Aut(Ĉ).

Now observe that the homomorphism SL(2,C) → PGL(2,C) is surjective, since the field C has the
property that every element is a perfect square. The kernel of this map is {I ,−I }, where I denotes the
identity matrix, and so we have isomorphisms

PSL(2,C) = SL(2,C)/{±I } ∼= PGL(2,C) ∼= Aut(Ĉ).

It is a standard fact that Aut(Ĉ) acts simply transitively on triples of pairwise distinct points in Ĉ.
This is equivalent to the statement that, for any triple (z0, z1, z2) of pairwise distinct points, there is a
unique Möbius transformation ϕ such that ϕ(0) = z0, ϕ(1) = z1, and ϕ(∞) = z2. Solving for ϕ given zi

is an elementary problem.
Consider the open upper half-plane H = {z ∈ C | Im z > 0}. The closure of H in Ĉ will be denoted

H; thus H =H∪R∪ {∞}. A Möbius transformation that preserves H must also preserve its boundary
∂H=R∪ {∞}. Therefore this transformation must be representable by a matrix with real entries. Note
that GL(2,R) and PGL(2,R) both have two connected components that are distinguished by the sign of
the determinant. The identity component of PGL(2,R) preservesH, while the other component swaps
H with the lower half-plane. The mapping

PSL(2,R) → PGL(2,R)

is an isomorphism onto the identity component. We conclude that there is an isomorphism

PSL(2,R) ∼= Aut(H).

Just as PGL(2,C) acts simply transitively on triples of pairwise distinct points in Ĉ, the group
PGL(2,R) acts transitively on triples of pairwise distinct points in R∪ {∞}. (The arguments can be
done in parallel if we think of Ĉ as the projective line over C and R∪ {∞} as the projective line over R.)
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However, the action of PSL(2,R) ∼= Aut(H) has two orbits: if we orient R∪ {∞} as the boundary of
H, there are two possible cyclic orderings of the three points: z0 < z1 < z2 < z0 and z0 < z2 < z1 < z0.
The action of PSL(2,R) preserves this cyclic ordering because it acts on H by orientation-preserving
diffeomorphisms. (The nonidentity component of PGL(2,R), which swaps the upper and lower half-
planes, reverses the cyclic ordering.) The conclusion is that PSL(2,R) ∼= Aut(H) acts simply transitively
on triples of pairwise distinct points in ∂H with a fixed cyclic ordering.

This has a consequence that if we consider configurations of one or two points on ∂H, there is a
nontrivial stabilizer subgroup of Aut(H).

First consider configurations of two distinct points on ∂H. There is only one cyclic ordering of two
points, so the action of Aut(H) is transitive. Thus the stabilizers for all configurations are mutually
conjugate subgroups, and we might as well just pick a single configuration and compute its stabi-
lizer. So consider the configuration (z0 = 0, z2 =∞). The general form of a Möbius transformation in
PSL(2,R) ∼= Aut(H) is

ϕ(z) = az +b

cz +d

with a,b,c,d ∈R and ad−bc = 1 The conditionϕ(∞) =∞ means c = 0, and the condition thatϕ(0) = 0
means b = 0. Thus ϕ(z) = ad−1z. Note that ad = 1 means that ad−1 = a2. So

ϕ(z) = a2z (a ∈R×)

is multiplication by some positive real number a2. Thus the stabilizer subgroup is isomorphic to the
multiplicative group (R>0, ·) of positive real numbers. Via the exponential map this is isomorphic to
the additive group (R,+).

Now consider the configurations of one point on ∂H. By transitivity we may as well take this point
to be ∞. The condition ϕ(∞) =∞ again means c = 0, so ad = 1 and so ϕ reduces to

ϕ(z) = a2z +ab (a ∈R×,b ∈R).

In other words, the stabilizer subgroup is the group of affine linear transformations of R with positive
leading coefficient. This is a two-dimensional connected and simply connected nonabelian Lie group;
these properties characterize it up to isomorphism.

So far we have used the upper half-plane model, but we could also use the unit disk model. LetD=
{z ∈C | |z| < 1}, and letDbe its closure. To compareH andDwe must choose a conformal isomorphism
between them. For lack of a canonical choice, let us choose

f (z) = z − i

z + i
.

This defines a map H→D, with f (0) =−1, f (1) =−i and f (∞) = 1.
By general nonsense, the group Aut(D) is conjugate to Aut(H) inside Aut(Ĉ):

Aut(D) = f Aut(H) f −1.

Recall that the stabilizer of the configuration (0,∞) in ∂H isϕ(z) =λz forλ ∈R>0. After conjugation
by f this becomes

ψ(z) = (λ+1)z + (λ−1)

(λ−1)z + (λ+1)
,

so these are the conformal automorphisms of D that fix (−1,1) in ∂D .
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Recall that the stabilizer of ∞∈ ∂H is ϕ(z) = λz +µ, where λ ∈ R>0,µ ∈ R. After conjugation by f
this becomes

ψ(z) = (λ+ iµ+1)z + (λ− iµ−1)

(λ+ iµ−1)z + (λ− iµ+1)
.

A conformal automorphism of H that fixes ∞ is completely determined by where it sends i : with
the notation as above, ϕ(i ) = λi +µ= τ ∈H. Since f (i ) = 0, by the same token, a conformal automor-
phism ofD that fixes 1 is completely determined by where it sends 0, which is some pointα= f (τ) ∈D.
Thus we may parametrize the stabilizer of 1 ∈ ∂D by points α ∈ D. We leave it as an exercise to carry
this out explicitly.
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