Math 417 Review Sheet: Homomorphisms, Cosets, and Quotient Groups

We use capital letters G, H, \ldots for groups, and Greek letters ϕ, π, \ldots for group homomorphisms.

Definition 1 (Homomorphism). Let *G* and *H* be groups. A function $\phi : G \to H$ is called a *homomorphism* if

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2) \text{ for all } g_1, g_2 \in G.$$

(It should be understood that the product on the left-hand side is the group operation in *G*, and the product on the right-hand side is the group operation in *H*).

Theorem 2 (Basic facts about homomorphisms). Let ϕ : $G \rightarrow H$ be a homomorphism. Then

- (1) ϕ takes the identity to the identity: $\phi(e_G) = e_H$.
- (2) ϕ takes inverses to inverses: $\phi(g^{-1}) = \phi(g)^{-1}$.
- (3) If A is a subgroup of G, then $\phi(A)$ is subgroup of H.
- (4) If B is a subgroup of H, then $\phi^{-1}(B)$ is a subgroup of G.

Definition 3 (Normal subgroup). A subgroup *N* in a group *G* is called *normal* if is closed under conjugation by elements of *G*:

$$gng^{-1} \in N$$
 for all $n \in N$ and $g \in G$.

Definition 4 (Kernel). Let ϕ : $G \rightarrow H$ be a homomorphism. The *kernel* of ϕ is the set

$$\ker(\phi) = \phi^{-1}(e_H) = \{ g \in G \mid \phi(g) = e_H \}.$$

Theorem 5. The kernel of a homomorphism is a normal subgroup of the domain; that is, if $\phi : G \to H$ is a homomorphism, then ker(ϕ) is a normal subgroup of *G*.

Theorem 6. A homomorphism ϕ : $G \rightarrow H$ is injective if and only if ker $(\phi) = \{e_G\}$.

Definition 7 (Cosets). Let *H* be a subgroup of a group *G*. A *left coset* of *H* in *G* is a set of the form

 $aH = \{ah \mid h \in H\}.$

The set of all left cosets of H in G is denoted

$$G/H = \{aH \mid a \in G\}.$$

The *index* of *H* in *G* is the cardinality of G/H. It is denoted [G:H].

Theorem 8 (Structural facts upon which Lagrange's theorem is based). Let H be a subgroup of G.

- (1) The left cosets of H in G form a partition of G; that is, the cosets are nonempty, pairwise disjoint, and their union is all of G.
- (2) The corresponding equivalence relation, denoted \sim_H , is given by

$$a \sim_H b \iff b^{-1}a \in H.$$

(3) All left cosets have the same cardinality; more specifically, the operation of left multiplication by ba^{-1} is a bijective function $aH \rightarrow bH$. Since H = eH is itself a left coset, all left cosets of H have the same cardinality as H.

Theorem 9 (Lagrange's theorem). Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G, and the index [G: H] is the ratio of these orders:

$$[G:H] = \frac{|G|}{|H|}.$$

Even if G or H is not finite, the equation

$$|G| = |H| \cdot [G:H]$$

is valid, it being understood that $\infty \cdot$ (finite) = ∞ *, and* $\infty \cdot \infty = \infty$.

Theorem 10 (Existence of the quotient group). Let *N* be a normal subgroup of *G*. Let $\pi : G \to G/N$ be the function that takes an element of *G* to its left coset: $\pi(a) = aN$. Then

- (1) There is a unique binary operation on G/N that makes π into a homomorphism.
- (2) This operation is given by the formula

$$(aN)(bN) = (ab)N.$$

Using this operation as the group operation on G/N, the following facts are true:

- (1) The identity element for G/N is N = eN.
- (2) The inverses in G/N are given by $(aN)^{-1} = (a^{-1})N$.
- (3) The function $\pi: G \to G/N$ is a surjective homomorphism whose kernel is N.

Remark 11. If *H* is a subgroup of *G* that is **not normal**, then the construction of the quotient group **does not work**: there does not exist a well-defined binary operation on *G*/*H* such that $\pi : G \to G/H$ is a homomorphism.