Math 417: Final Exam Practice problems

1. Let G be the set of 3-by-3 matrices with the property that there is exactly one nonzero entry in each row, exactly one nonzero entry in each column, and the nonzero entries are always +1 or -1 . Prove that G is isomorphic to the semidirect product of S_{3} and H, where H is the group of 3-by-3 matrices that are diagonal with ± 1 along the diagonal.
2. Suppose that $G \cong \mathbb{Z}_{5} \rtimes_{\alpha} \mathbb{Z}_{3}$ is a semidirect product of \mathbb{Z}_{5} and \mathbb{Z}_{3} with respect to a homomorphism $\alpha: \mathbb{Z}_{3} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{5}\right)$. Show that α is trivial and that $G \cong \mathbb{Z}_{5} \times \mathbb{Z}_{3}$. Is G a cyclic group?
3. Consider the vector space \mathbb{R}^{n}. Let $G=\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ be the group of nonzero real numbers with multiplication. Show that the multiplication of vectors by scalars

$$
G \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v}
$$

defines an action of G on \mathbb{R}^{n}.
4. Consider the group D_{4}, the symmetries of a square. Let V be the set of vertices of the square, and let E be the set of edges of the square. Go through each of the 8 elements of D_{4} and answer the questions: How many elements of V does it fix? How many elements of E does it fix?
5. Let a group G act on a set X. Let $Y \subseteq X$ be a subset, and define

$$
G_{Y}=\{g \in G \mid \forall y \in Y, g \cdot y=y\}
$$

to be the set of group elements that fix every element of Y. Show that G_{Y} is a subgroup of G.
6. Let a group G act on itself by conjugation. Show from the definitions that the kernel of this action equals the center of G.
7. Find the number of orbits in $\{1,2,3,4,5,6,7,8\}$ under the action of the subgroup of S_{8} generated by (13) and (247).
8. How many ways are there to divide a set of 10 people into two sets of 5 ?
9. How many ways are there to seat 7 people around a round table, if we regard two arrangements that differ by a rotation as the same?
10. How many ways are there to color the edges of a square with 4 colors (if we regard colorings that differ by the action of an element of D_{4} as being the same)?
11. Write out the conjugacy classes in S_{4}. Write out the class equation for S_{4}.
12. Let G be a finite group, and let p be a prime number dividing $|G|$. Let P be a subgroup of G whose order is a power of p, and which is normal. Show that any p-Sylow subgroup of G must contain P.
13. Show that every group of order 45 has a normal subgroup of order 9 .

