
Math 417 Review Sheet: Examples of Groups
This is a list of some of the examples of groups we have seen in this course, together with some

basic facts about them. Any specific groups appearing on the exam are likely to be either on this list
or similar to a group on this list.

1. DIHEDRAL GROUPS (SYMMETRIES OF POLYGONS)

The symmetry group of a regular n-gon is the dihedral group Dn . It has 2n elements: n rotations
and n flips. We usually assume that the polygon is drawn in the plane, centered at the origin, and has
a vertex on the positive x-axis. Let r = r2π/n be the rotation counterclockwise by 2π/n radians, and let
j be the flip accross the x-axis. Then the group Dn has elements

Dn = {e,r,r 2, . . . ,r n−1, j ,r j ,r 2 j , . . . ,r n−1 j }.

When written this way, the relations r n = e, j 2 = e, and j r = r−1 j suffice to compute the product of
any two elements.

2. SYMMETRIC GROUPS (PERMUTATIONS)

Let X be a set. Define

Sym(X ) = { f : X → X | f is a bijective function}.

Then Sym(X ) is a group under composition of functions. Elements of Sym(X ) are called permutations
of X . In the case where X = {1,2, . . . ,n}, we write Sn = Sym({1,2, . . . ,n}). This group is not abelian if
n ≥ 3.

If a1, a2, . . . , ak is a finite sequence of pairwise disjoint elements of X , then the notationσ= (a1a2 . . . ak )
refers to the permutation of X such that:

(1) for 1 ≤ i ≤ k −1, σ(ai ) = ai+1;
(2) σ(ak ) = a1;
(3) σ(x) = x if x does not appear in the list a1, a2, . . . , ak .

Such a permutation is called a k-cycle. When X is finite, any permutation may be written as a product
of disjoint cycles (in an essentially unique way).

A 2-cycle (a1a2) is called a transposition. When X is finite, any permutation may be written as a
product of transpositions, but this representation is not unique.

There is a homomorphism ε : Sn → {1,−1}. It can be defined as ε= det◦T , where det : GL(n,R) →R∗
is the determinant homorphism, and T : Sn → GL(n,R) is the homomorphism that sends a permu-
tation to the corresponding permutation matrix. This homomorphism has the property that, for any
transposition τ, ε(τ) =−1. It follows that, for any permutation σ, we have ε(σ) = 1 if and only if σ can
be written as a product of an even number of transpositions, and ε(σ) = −1 if and only if σ can be
written as a product of an odd number of transpositions.

3. ADDITIVE GROUPS OF NUMBER SYSTEMS

Consider the number systems Z, Q, R, C, and Zn (integers, rationals, reals, complex numbers, and
integers modulo n). Each of these number systems has a notion of addition. In each case, addition
makes the set into an abelian group.

When we are dealing with such examples of groups, we use a notation that is different from the
abstract notation for groups. When dealing with abstract groups, we write the group operation as if it
were multiplication: if a,b ∈G , then the result of applying the group operation to a and b is denoted
ab; also, the inverse of a is denoted a−1. But when dealing with groups where the group operation is
“really” some kind of addition, we write a +b for the operation. Also, the identity element is denoted
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by 0 or [0], and the inverse of a is denoted by −a. Furthermore, if H is a subset of such an “additive”
group, then the cosets of H are denoted by a +H (instead of aH as in the abstract setting).

4. MULTIPLICATIVE GROUPS OF NUMBER SYSTEMS

Consider again the number systems Z, Q, R, C, and Zn . Each of these sets has a notion of multipli-
cation, which is commutative, associative, and has an identity element 1. However, not every element
has a multiplicative inverse that lies in the same set. Nevertheless, if we remove the elements that do
not have multiplicative inverses, we obtain an abelian group:

(1) The set of integers whose multiplicative inverse is also an integer is {1,−1}, so this is an abelian
group under multiplication.

(2) A rational, real, or complex number is multiplicatively invertible if and only if it is not zero. So
Q∗ =Q\ {0}, R∗ =R\ {0}, and C∗ =C\ {0} are all abelian groups under multiplication.

(3) An element [a] ∈Zn is multiplicatively invertible if and only if gcd(a,n) = 1. Note that if n = p
is a prime number then gcd(a, p) = 1 if and only if [a] 6= [0]. Thus:
(a) Z∗

n = {[a] ∈Zn | gcd(a,n) = 1} is an abelian group under multiplication.
(b) When p is prime, Z∗

p =Zp \ [0] is an abelian group under multiplication.

Other notable subgroups of the above groups include R+, the group of positive real numbers under
multiplication, and the group of unit complex numbers

U = {a +bi | a2 +b2 = 1} = {e iθ | θ ∈R}.

Geometrically, U is a circle of radius 1 in the complex plane.

5. MATRIX GROUPS

Consider the set of n ×n matrices with entries in some number system, which we can take to be
Z,Q,R,CorZn . Matrix multiplication is an associative operation, and it has an identity element, which
is the identity matrix (1 on the diagonal and 0 off the diagonal). However, not every matrix is invertible.
The general fact is that a matrix (with entries in some number system) is invertible if and only if its
determinant is invertible (in that number system). This gives us the following examples

(1) GL(n,Q) is the group of n ×n matrices with rational entries and nonzero determinant.
(2) GL(n,R) is the group of n ×n matrices with real entries and nonzero determinant.
(3) GL(n,C) is the group of n ×n matrices with complex entries and nonzero determinant.
(4) GL(n,Z) is the group of n ×n matrices with integer entries whose determinant is 1 or −1. (If

the determinant is nonzero, but not ±1, then the determinant of the inverse matrix will be a
fraction, and so it cannot have integer entries.)

(5) When p is prime, GL(n,Zp ) is the group of n ×n matrices with Zp entries, whose determinant
is not [0] ∈Zp .

We can also consider the subgroup of matrices whose determinant is equal to 1.

(1) SL(n,Q) is the group of n ×n matrices with rational entries and determinant equal to 1.
(2) SL(n,R) is the group of n ×n matrices with real entries and determinant equal to 1.
(3) SL(n,C) is the group of n ×n matrices with complex entries and determinant equal to 1.
(4) SL(n,Z) is the group of n ×n matrices with integer entries and determinant equal to 1.
(5) When p is prime, SL(n,Zp ) is the group of n ×n matrices with Zp entries and determinant

equal to [1].

We can also obtain subgroups by restricting the “shape” of the matrix. A matrix is called upper
triangluar if all entries below the diagonal are zero. For instance, a 3×3 upper triangular matrix looks
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like a b c
0 d e
0 0 f


A lower triangular matrix has all zeros above the diagonal. A diagonal matrix is one which is both
upper and lower triangular, that is, it only has nonzero entries along the main diagonal.

Proposition 1. The set of upper triangular n ×n matrices is closed under multiplication. So are the
sets of lower triangular matrices and of diagonal matrices. Moreover, if such a matrix is invertible, its
inverse has the same shape.

Proposition 2. Let A = (ai j ) be an n ×n matrix that is either upper triangular, lower triangular, or
diagonal. Then the determinant of A is equal to the product of the entries on the main diagonal:

det(A) =
n∏

i=1
ai i .

For example, the set 
a b c

0 d e
0 0 f

 | a,b,c,d ,e, f ∈R, a 6= 0,d 6= 0, f 6= 0


is a group under matrix multiplication; it is a subgroup of GL(3,R).

6. DIRECT PRODUCTS AND VECTORS

We can build many more groups by taking direct products of the groups listed in the previous sec-
tions. Recall that if A and B are groups, then A×B is the group whose elements are ordered pairs (a,b)
with a ∈ A and b ∈ B , and with the binary operation

(a1,b1)(a2,b2) = (a1a2,b1b2).

A related construction is the following. Let A be a group, and let n ≥ 1 be an integer. Then we can
consider the set An of all n-tuples whose coordinates are elements of A:

An = {(a1, a2, . . . , an) | ai ∈ A for all i }.

This set is also a group under coordinate-wise operations:

(a1, a2, . . . , an)(a′
1, a′

2, . . . , a′
n) = (a1a′

1, a2a′
2, . . . , an a′

n)

The most commonly encountered instance of this construction is when A is the additive group of
a number system. So let A =Z,Q,R,C, or Zk , with addition as the group operation. Then we write the
coordinate-wise operation additively:

(a1, a2, . . . , an)+ (a′
1, a′

2, . . . , a′
n) = (a1 +a′

1, a2 +a′
2, . . . , an +a′

n).

In other words, the groupsZn ,Qn , Rn ,Cn , andZn
k are the groups of n-dimensional vectors with entries

in each number system. In particular, Rn and Cn are the standard vector spaces of traditional linear
algebra, regarded as abelian groups with respect to addition.


