Math 417: Exam 2 Practice problems

Note: The problems on the exam may be similar in spirit to the ones given here, or they may be somewhat different. The point of this practice sheet is to develop a familiarity with the underlying theory and concepts.

- 1. Suppose that $\varphi : \mathbb{Z} \to \mathbb{Z}_7$ is a homomorphism, and that $\varphi(1) = [4]$. Find $\varphi(25)$ and ker(φ).
- 2. Find the subgroup of S_4 generated by the set {(12), (34)}.
- 3. Show that if $\varphi : G \to G'$ is a homomorphism and |G| is prime, then φ is either injective or trivial. (For any groups *G* and *G'*, the trivial homomorphism is the function defined by $\varphi(x) = e$ for all $x \in G$.)
- 4. For $g \in G$, we have the function $L_g : G \to G$, $L_g(x) = gx$. Find an example where L_g is a homomorphism, and find an example where L_g is not a homomorphism.
- 5. For $g \in G$, show that the function $C_g : G \to G$, $C_g(x) = gxg^{-1}$ is an isomorphism.
- 6. How many elements does the quotient group $\mathbb{Z}_{10}/\langle [4] \rangle$ have?
- 7. Let *N* be a normal subgroup of *G*, and let m = [G : N] be the number of cosets of *N* in *G*. Show that for every $g \in G$, $g^m \in N$.
- 8. Let $\zeta_n = e^{2\pi i/n} = \cos(2\pi/n) + i \sin(2\pi/n)$. Let $G = \langle \zeta_n \rangle \leq \mathbb{C}^*$ be the subgroup of group of nonzero complex numbers (with multiplication) generated by ζ_n . Show that *G* is isomorphic to \mathbb{Z}_n .
- 9. Find a group *G* and two normal subgroups $H \triangleleft G$, $K \triangleleft G$ such that *H* is isomorphic to *K* but *G*/*H* is not isomorphic to *G*/*K*.
- 10. Find a complete list of all subgroups of $\mathbb{Z}_4 \times \mathbb{Z}_2$.
- 11. Let $\varphi : G \to \overline{G}$ be a group homomorphism. Let $N \triangleleft \overline{G}$ be a normal subgroup. Show that $\varphi^{-1}(N)$ is a normal subgroup of *G*.
- 12. (This is too long for an exam problem, and a similar problem appeared on the homework.) In the group $G = \mathbb{Z}_{24}$, let $H = \langle [4] \rangle$, and $K = \langle [8] \rangle$. Note $K \leq H \leq G$.
 - (a) List the cosets in G/H, showing the elements in each coset.
 - (b) List the cosets in *G*/*K*, showing the elements in each coset.
 - (c) List the cosets in H/K, showing the elements in each coset.
 - (d) List the cosets in (G/H)/(H/K), showing the elements in each coset.
 - (e) Write down the correspondence between G/H and (G/K)/(H/K) that is gauranteed by Proposition 2.7.14.
- 13. Let $G = \mathbb{Z}_{512} \times \mathbb{Z}_{1729}$, and let *H* be the subgroup generated by ([0], [1]). Show that *G*/*H* is isomorphic to \mathbb{Z}_{512} . (It's better not to try to list all 885248 elements of $G \odot$).
- 14. Let *G* be the group consisting of the four matrices

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

Show that *G* is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.