Math 417: Exam 2 Practice problems

Note: The problems on the exam may be similar in spirit to the ones given here, or they may be somewhat different. The point of this practice sheet is to develop a familiarity with the underlying theory and concepts.

1. Suppose that $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{7}$ is a homomorphism, and that $\varphi(1)=[4]$. Find $\varphi(25)$ and $\operatorname{ker}(\varphi)$.
2. Find the subgroup of S_{4} generated by the set $\{(12),(34)\}$.
3. Show that if $\varphi: G \rightarrow G^{\prime}$ is a homomorphism and $|G|$ is prime, then φ is either injective or trivial. (For any groups G and G^{\prime}, the trivial homomorphism is the function defined by $\varphi(x)=e$ for all $x \in G$.)
4. For $g \in G$, we have the function $L_{g}: G \rightarrow G, L_{g}(x)=g x$. Find an example where L_{g} is a homomorphism, and find an example where L_{g} is not a homomorphism.
5. For $g \in G$, show that the function $C_{g}: G \rightarrow G, C_{g}(x)=g x g^{-1}$ is an isomorphism.
6. How many elements does the quotient group $\mathbb{Z}_{10} /\langle[4]\rangle$ have?
7. Let N be a normal subgroup of G, and let $m=[G: N]$ be the number of cosets of N in G. Show that for every $g \in G, g^{m} \in N$.
8. Let $\zeta_{n}=e^{2 \pi i / n}=\cos (2 \pi / n)+i \sin (2 \pi / n)$. Let $G=\left\langle\zeta_{n}\right\rangle \leq \mathbb{C}^{*}$ be the subgroup of group of nonzero complex numbers (with multiplication) generated by ζ_{n}. Show that G is isomorphic to \mathbb{Z}_{n}.
9. Find a group G and two normal subgroups $H \triangleleft G, K \triangleleft G$ such that H is isomorphic to K but G / H is not isomorphic to G / K.
10. Find a complete list of all subgroups of $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$.
11. Let $\varphi: G \rightarrow \bar{G}$ be a group homomorphism. Let $N \triangleleft \bar{G}$ be a normal subgroup. Show that $\varphi^{-1}(N)$ is a normal subgroup of G.
12. (This is too long for an exam problem, and a similar problem appeared on the homework.) In the group $G=\mathbb{Z}_{24}$, let $H=\langle[4]\rangle$, and $K=\langle[8]\rangle$. Note $K \leq H \leq G$.
(a) List the cosets in G / H, showing the elements in each coset.
(b) List the cosets in G / K, showing the elements in each coset.
(c) List the cosets in H / K, showing the elements in each coset.
(d) List the cosets in $(G / H) /(H / K)$, showing the elements in each coset.
(e) Write down the correspondence between G / H and $(G / K) /(H / K)$ that is gauranteed by Proposition 2.7.14.
13. Let $G=\mathbb{Z}_{512} \times \mathbb{Z}_{1729}$, and let H be the subgroup generated by ([0], [1]). Show that G / H is isomorphic to \mathbb{Z}_{512}. (It's better not to try to list all 885248 elements of $\left.G()_{)}\right)$.
14. Let G be the group consisting of the four matrices

$$
G=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

Show that G is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

