Math 417: Homework 8

Due Friday, October 27, 2023

1. (10 points) An affine transformation of the vector space \mathbb{R}^{n} is a transformation of the form

$$
T_{A, b}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad T_{A, b}(x)=A x+b,
$$

where A is an invertible $n \times n$ matrix, and b is a vector. The set of all affine transformations is denoted $\operatorname{Aff}(n)$:

$$
\operatorname{Aff}(n)=\left\{T_{A, b}: A \in \mathrm{GL}(n, \mathbb{R}), b \in \mathbb{R}^{n}\right\}
$$

(a) Prove that $\operatorname{Aff}(n)$ is a group under composition of functions.
(b) Prove that the function

$$
\Phi: \operatorname{Aff}(n) \rightarrow \mathrm{GL}(n, \mathbb{R}), \quad \Phi\left(T_{A, b}\right)=A
$$

is a surjective homomorphism.
(c) Let N be the kernel of Φ. Prove that N is isomorphic to the vector space \mathbb{R}^{n} (where the group operation on \mathbb{R}^{n} is vector addition).
(d) Deduce that $\operatorname{Aff}(n) / N$ is isomorphic to $\operatorname{GL}(n, \mathbb{R})$.
2. (5 points) Goodman, exercise 2.7.4.
3. (5 points) Let $G=\mathbb{Z}_{8}$, and consider the subgroups $H=\langle[2]\rangle$ and $K=\langle[4]\rangle$. Note that $K \leq H \leq G$.
(a) List the cosets of H in G, showing the elements in each coset.
(b) List the cosets of K in G, showing the elements in each coset.
(c) List the cosets of K in H, showing the elements in each coset.
(d) List the cosets of H / K in G / K, showing the elements in each coset.
(e) Write down the correspondence between G / H and $(G / K) /(H / K)$ that is guaranteed by Proposition 2.7.14.
4. (5 points) Goodman, exercise 2.7.11.
5. (5 points) Goodman, exercise 3.1.9.
6. (10 points) \mathbb{R} is group of real numbers (with addition), and \mathbb{C}^{*} is the group of nonzero complex numbers (with multiplication).
Prove that there is an isomorphism

$$
\mathbb{C}^{*} \cong \mathbb{R} \times(\mathbb{R} / \mathbb{Z})
$$

Hint: Think about exponentials and logarithms of complex numbers.

