Math 417: Homework 7

Due Friday, October 20, 2021

1. (5 points) Goodman, exercise 2.7.2.
2. ($\mathbf{1 0}$ points) Goodman, exercise 2.7.6.
3. (5 points) Goodman, exercise 2.7.7.
4. (10 points) Let G be a group and let $x, y \in G$. The expression $x y x^{-1} y^{-1}$ is called the commutator of x and y, because $x y x^{-1} y^{-1}=e$ if and only if $x y=y x$ ("two elements commute iff their commutator is trivial").
Let S be the set of all commutators in G :

$$
S=\left\{x y x^{-1} y^{-1}: x, y \in G\right\} .
$$

Let C be the subgroup generated by S : $C=\langle S\rangle$. Then C is called the commutator subgroup of G. (Remark: the set S is not necessarily a subgroup of G.)
(a) Prove that if ϕ is an automorphism of G, then $\phi(S)=S$ and $\phi(C)=C$.
(b) Prove that C is a normal subgroup of G. Hint: Conjugation by g is an automorphism.
(c) Prove that G / C is abelian.
(d) Prove that if H is a normal subgroup of G such that G / H is abelian, then $C \subseteq H$.
5. (10 points) Let G be the group of 2×2 matrices that are upper triangular and invertible, namely:

$$
G=\left\{\left[\begin{array}{ll}
x & z \\
0 & y
\end{array}\right]: x, y, z \in \mathbb{R}, x \neq 0, y \neq 0\right\} .
$$

(You make take for granted that this set is a group under matrix multiplication.) There is a subgroup $H \leq G$ comprising those matrices in G that have ones on the diagonal, namely:

$$
H=\left\{\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right]: z \in \mathbb{R}\right\} .
$$

Prove that
(a) H is a normal subgroup of G,
(b) H is abelian,
(c) G / H is abelian, and
(d) G is not abelian.

